Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
 
 
     
ORIGINAL ARTICLE - PROSPECTIVE STUDY
Year : 2016  |  Volume : 6  |  Issue : 2  |  Page : 175-181

Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial


1 Department for Oral, Cranio-maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt am Main, Germany
2 Department for Diagnostic and Interventional Radiology, Medical Center of the Goethe University, Frankfurt am Main, Germany
3 Hightech Research Center of Cranio-Maxillofacial Surgery, University of Basel, Basel, Switzerland
4 Private Practice, Nauheim, Germany

Correspondence Address:
Shahram Ghanaati
Department for Oral, Cranio-maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt am Main
Germany
Login to access the Email id


DOI: 10.4103/2231-0746.200344

Rights and Permissions

Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed333    
    Printed2    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal