Atormac
Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
 
 
     

 Table of Contents  
TECHNICAL NOTE
Year : 2018  |  Volume : 8  |  Issue : 2  |  Page : 303-306

Distraction osteogenesis after stem cell transplantation: A pioneer approach


1 Department of Oral and Maxillofacial Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
2 Department of Pediatric Hematology, Oncology, Hemostaseology, University Hospital Leipzig, Leipzig, Germany
3 Department of Orthodontics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
4 Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany

Date of Web Publication26-Dec-2018

Correspondence Address:
Dr. Jan Oliver Voss
Department of Oral and Maxillofacial Surgery, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
Germany
Login to access the Email id


DOI: 10.4103/ams.ams_41_18

PMID: 30693250

Rights and Permissions
  Abstract 


Allogeneic hematopoietic stem cell transplantation (HSCT) is an established therapy and is without alternative for certain groups of patients. Successful HSCT induces both long-lasting remission and tolerance without the need for further immunosuppression. In this case, cellular repair and regenerative processes work in a physiologic manner allowing elective surgical procedures, such as the interdisciplinary correction of dentofacial anomalies. Here, we report the successful management of transverse maxillary deficiency by transpalatal distraction and subsequent orthodontic treatment in a 12-year-old boy who underwent HSCT for high-risk acute lymphoblastic leukemia at 5 years of age.

Keywords: Dentofacial anomaly, stem cell transplantation, transpalatal distraction, transverse maxillary deficiency


How to cite this article:
Voss JO, Kühl JS, Holm M, Hauptmann K, Adolphs N. Distraction osteogenesis after stem cell transplantation: A pioneer approach. Ann Maxillofac Surg 2018;8:303-6

How to cite this URL:
Voss JO, Kühl JS, Holm M, Hauptmann K, Adolphs N. Distraction osteogenesis after stem cell transplantation: A pioneer approach. Ann Maxillofac Surg [serial online] 2018 [cited 2019 Sep 22];8:303-6. Available from: http://www.amsjournal.com/text.asp?2018/8/2/303/248601




  Introduction Top


Allogeneic hematopoietic stem cell transplantation (HSCT) is an established therapy and is without alternative for certain groups of patients. Even in some forms of high-risk pediatric acute lymphoblastic leukemia, remission rates >80% can be achieved with allogeneic HSCT by taking advantage of the graft-versus-leukemia effect.[1] If remission without recurrence persists for >4 years, patients have a relapse risk of <1%.[2] Typical side effects of such a treatment include impairment of growth, hormonal dysregulation, secondary malignancies, and graft-versus-host reactions.[3] Specific osteotoxic effects can be caused by the initial hematological pathology or myeloablative conditioning including total body irradiation or may be steroid related during immunosuppressive graft-versus-host therapy.[4],[5] Despite this, successful allogeneic HSCT, especially in childhood, implies induction of tolerance, which usually allows the patient to stop immunosuppression within the 1st-year posttransplant. Therefore, it is presumed that cellular repair and regeneration processes recover to work in a physiologic manner.[6]

Compared with lifesaving hemato-oncologic therapy, the interdisciplinary orthodontic-orthognathic correction of patients affected by dentofacial anomalies has an elective character due to functional and psychosocial indications.[7],[8] Due to an increasing number of pediatric patients become long-term survivors following HSCT[9] and the fact that radio- and/or chemotherapy may be a trigger for dentofacial anomalies,[10],[11] it is likely that there will be an increasing number of patients affected by such anomalies. To date, there have been no reports regarding the interdisciplinary correction of dentofacial anomalies in patients who previously underwent HSCT.


  Case Report Top


We report the combined correction of a transversal maxillary deficiency by transpalatal distraction and subsequent orthodontic treatment in a 12-year-old boy who underwent allogeneic HSCT 7 years earlier for acute lymphoblastic leukemia. The initial diagnosis was made in September 2006. After intensive remission-induction chemotherapy, bone marrow transplantation from his human leukocyte antigen-identical brother was performed in the first remission in March 2007. Myeloablative therapy consisted of total body irradiation (12 Gy total dose), followed by intravenous (i.v.) administration of etoposide (VP-16; 60 mg/kg). In December 2008, the patient developed limited chronic graft-versus-host disease (GvHD; skin only), which resolved with prednisone and azathioprine. In December 2009, immunosuppression was terminated. Thereafter, hematological follow-up was uneventful with persistent remission and complete donor chimerism.

In 2014, 7 years after HSCT, the patient was referred by his orthodontist to correct the transverse maxillary deficiency (TMD) with crowding and malposition of both upper incisors in a skeletal Class II situation. Whether the occlusal situation was a result of the preceding oncologic therapy, impairing further maxillary growth is discussed [Figure 1]a and [Figure 1]b.
Figure 1: (a and b) Initial situation: skeletal Class II malocclusion with malposition of both upper incisors and increased risk for traumatic tooth loss

Click here to view


At that time, from a hematological point of view, there was no contraindication for combined correction of the present TMD and malocclusion with most of the relevant blood parameters within the normal range. Subsequently, in July 2015, a piezosurgery-assisted subtotal Le Fort I osteotomy modified according to Betts and Scully was performed[12] and a transpalatal distraction device was inserted (Surgitec “All-in-One,” size 2.5, Surgitec, Leuven, Belgium) under general anesthesia and with perioperative i.v. administration of penicillin G. The device was activated intraoperatively up to 8 mm to control the widening [Figure 2]a.
Figure 2: (a) Intraoperative view with inserted distraction device and testing of activation (8 mm). (b) Physiologic, clinical situation after the end of active distraction: 14 mm width of diastema

Click here to view


After 5 days of latency, activation of the device was performed for 12 days up to a diastema width of 14 mm [Figure 2]b.

Three weeks after the end of active distraction, orthodontic positioning leveling and aligning were initiated by fixed appliances using the straight wire technique (0.12–0.16 NiTi arches). Closure of the diastema was subsequently realized from the 12th week following termination of activation over the course of 3 months using orthodontic “power chains” and “figure-of-eight ligatures” [Figure 3]a.
Figure 3: (a) Physiologic, clinical situation following orthodontic closure of the diastema 6 months after termination of the active distraction. (b and c) Clinical situation 5 days after device removal and 12 months after device insertion

Click here to view


Three months following the termination of orthodontic therapy, the distraction device was removed under general anesthesia; during this procedure, the distraction zone was clinically inspected and distracted bone was harvested for histological evaluation in the same setting.

Overall consolidation time after the end of active distraction was 10 months. Clinically, physiologic processes were observed during all steps of therapy, as demonstrated in [Figure 2]b and [Figure 3]a, [Figure 3]b, [Figure 3]c.

No impairments in wound healing, callus mineralization, or orthodontic dental movements were observed. There was no delayed wound healing following insertion and removal of the distraction device; no infective complication or problems with respect to bone stability during activation or the consolidation phase occurred. Orthodontic therapy was also uneventful, and correct alignment of the upper dental arch was achieved within the typical treatment time. Histological samples of the distraction zone showed a physiologic pattern of mineralized bone 12 months after device insertion [Figure 4].
Figure 4: Histological specimen taken from the distraction zone during device removal demonstrating physiologic bone formation of mineralized bone with small, vital osteocytes and slight fibrosis in the medullary cavity (H and E; ×100)

Click here to view



  Discussion Top


HSCT following successful initial treatment is regarded as the treatment of choice in forms of high-risk acute pediatric leukemia.[6] However, impairment of further growth may be one of the multiple side effects, which are caused by the primary neoplastic disorder or the subsequent therapy and can both affect bone metabolism.[13],[14] Related bony pathology during childhood is complex and cannot be prevented by substitution. Monitoring of bone metabolism and the elimination of additional factors is recommended.[5]

The principle of distraction osteogenesis (DO) is an established therapy when skeletal deficiency is present. Almost 100 years after the first successful femoral callus distraction in humans by August Bier, the underlying physiology of DO is better understood.[15] A systematic description and development of the method for limb lengthening have been provided by Ilizarov, who was the first to describe the “tension-stress effect” and the required conditions: Metabolic activation and improved vascularization mediated by gradual traction.[16],[17] Using this principle, not only bone but also the surrounding neurovascular and soft tissues can be expanded, thus comprehensively correcting the deficiency. Therefore, the term “distraction histiogenesis” might be more appropriate. Application of DO for the correction of craniofacial and dentofacial deformities was emphasized by McCarthy et al. in the late 1980s,[18] although the first comparable approaches were described significantly earlier by Wasmund and Rosenthal to correct dentofacial growth deficiency.[19]

On the molecular level, it has been hypothesized that gradual external tension initiates a complex cellular differentiation that is mediated by elements of the cytoskeleton (“mechanotransduction”) and acts like an “in vivo bioreactor,” although not all details are known.[20] According to observations made during the combined surgical-orthodontic treatment of our patient, DO and subsequent bone remodeling appear to work in the same way in patients who have already undergone successful allogeneic HSCT. Histological bony architecture and mineralization within the distraction zone showed a physiologic pattern 10 months after the end of active distraction [Figure 4]. Therefore, the principle of gradual expansion of bone and surrounding soft tissues appears to also be applicable for patients following HSCT, provided GvHD has resolved, and immune reconstitution has occurred.


  Conclusions Top


With an individually adapted treatment approach, interdisciplinary surgical-orthodontic treatment of dentofacial anomalies is possible in patients who have previously undergone allogeneic HSCT. Clinical outcome of this patient-year after bone marrow transplantation was similar compared to healthy adolescent patients who received transpalatal DO and subsequent orthodontic treatment for the correction of a dentofacial anomaly. Therefore, the principle of gradual expansion of bone and surrounding soft tissues is also applicable to posttransplant patients at least in the absence of GvHD and immunosuppression. The management of dentofacial growth impairment by DO in this group of patients appears to be a viable approach.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the legal guardian has given his consent for images and other clinical information to be reported in the journal. The guardian understands that names and initials will not be published and due efforts will be made to conceal patient identity, but anonymity cannot be guaranteed.

Acknowledgments

The authors would like to thank the patient for permission/informed consent to disseminate this case report. Special thanks to Franz Hafner for his organizational skills in arranging photo documentation for this article.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Peters C, Schrappe M, von Stackelberg A, Schrauder A, Bader P, Ebell W, et al. Stem-cell transplantation in children with acute lymphoblastic leukemia: A prospective international multicenter trial comparing sibling donors with matched unrelated donors-the ALL-SCT-BFM-2003 trial. J Clin Oncol 2015;33:1265-74.  Back to cited text no. 1
    
2.
Pui CH, Pei D, Campana D, Cheng C, Sandlund JT, Bowman WP, et al. Arevised definition for cure of childhood acute lymphoblastic leukemia. Leukemia 2014;28:2336-43.  Back to cited text no. 2
    
3.
Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006;355:1572-82.  Back to cited text no. 3
    
4.
Strauss AJ, Su JT, Dalton VM, Gelber RD, Sallan SE, Silverman LB, et al. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 2001;19:3066-72.  Back to cited text no. 4
    
5.
Mostoufi-Moab S, Halton J. Bone morbidity in childhood leukemia: Epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep 2014;12:300-12.  Back to cited text no. 5
    
6.
Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med 2006;354:1813-26.  Back to cited text no. 6
    
7.
Brachvogel P. Orthopädische Chirurgie. In: Hausamen JE, Becker J, Neukam FW, Reichart PA, Schliephake H, Schmelzeisen R, editors. Curriculum Mund-Kiefer-und Gesichtschirurgie. Berlin: Quintessenz Verlags GmbH; 2003. p. 199-245.  Back to cited text no. 7
    
8.
Steinhäuser EW. Historical development of orthognathic surgery. J Craniomaxillofac Surg 1996;24:195-204.  Back to cited text no. 8
    
9.
MacMillan ML, Davies SM, Nelson GO, Chitphakdithai P, Confer DL, King RJ, et al. Twenty years of unrelated donor bone marrow transplantation for pediatric acute leukemia facilitated by the national marrow donor program. Biol Blood Marrow Transplant 2008;14:16-22.  Back to cited text no. 9
    
10.
Vesterbacka M, Ringdén O, Remberger M, Huggare J, Dahllöf G. Disturbances in dental development and craniofacial growth in children treated with hematopoietic stem cell transplantation. Orthod Craniofac Res 2012;15:21-9.  Back to cited text no. 10
    
11.
da Fonseca MA. Long-term oral and craniofacial complications following pediatric bone marrow transplantation. Pediatr Dent 2000;22:57-62.  Back to cited text no. 11
    
12.
Betts NJ, Scully JR. Transverse maxillary distraction osteogenesis. In: Fonseca RJ, Turvey TA, editors. Oral and Maxillofacial Surgery. 2nd ed. St. Louis: Saunders Elsevier; 2009. p. 219-37.  Back to cited text no. 12
    
13.
Holm K, Nysom K, Rasmussen MH, Hertz H, Jacobsen N, Skakkebaek NE, et al. Growth, growth hormone and final height after BMT. Possible recovery of irradiation-induced growth hormone insufficiency. Bone Marrow Transplant 1996;18:163-70.  Back to cited text no. 13
    
14.
Huma Z, Boulad F, Black P, Heller G, Sklar C. Growth in children after bone marrow transplantation for acute leukemia. Blood 1995;86:819-24.  Back to cited text no. 14
    
15.
Wiedemann M. Callus distraction: A new method? A historical review of limb lengthening. Clin Orthop Relat Res 1996;(327):291-304.  Back to cited text no. 15
    
16.
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 1989;(238):249-81.  Back to cited text no. 16
    
17.
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 1989;(239):263-85.  Back to cited text no. 17
    
18.
McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 1992;89:1-8.  Back to cited text no. 18
    
19.
Hönig JF, Grohmann UA, Merten HA. Facial bone distraction osteogenesis for correction of malocclusion: A more than 70-year-old concept in craniofacial surgery. Plast Reconstr Surg 2002;109:41-4.  Back to cited text no. 19
    
20.
Dhaliwal K, Kunchur R, Farhadieh R. Review of the cellular and biological principles of distraction osteogenesis: An in vivo bioreactor tissue engineering model. J Plast Reconstr Aesthet Surg 2016;69:e19-26.  Back to cited text no. 20
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]



 

Top
 
 
Search
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)  

 
  In this article
   Abstract
  Introduction
  Case Report
  Discussion
  Conclusions
   References
   Article Figures

 Article Access Statistics
    Viewed625    
    Printed40    
    Emailed0    
    PDF Downloaded87    
    Comments [Add]    

Recommend this journal