Atormac
Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
 
 
     

 Table of Contents  
REVIEW ARTICLE
Year : 2018  |  Volume : 8  |  Issue : 2  |  Page : 315-319

Evaluation of the different biomaterials used in alveolar cleft defects in children


1 Department of Surgery and Integrated Clinic, Araçatuba Dental School, University Estadual Paulista, Araçatuba, São Paulo, Brazil
2 Department of Basic Sciences, Araçatuba Dental School, University Estadual Paulista, Araçatuba, São Paulo, Brazil

Date of Web Publication26-Dec-2018

Correspondence Address:
Ms. Danila De Oliveira
Department of Basic Sciences, Araçatuba Dental School, University Estadual Paulista, José Bonifácio, 1193 Araçatuba, São Paulo
Brazil
Login to access the Email id


DOI: 10.4103/ams.ams_140_17

PMID: 30693253

Rights and Permissions
  Abstract 


The aim of this study was to use a literature review to evaluate and compare the different biomaterials used in surgeries for the closure of the palatal and alveolar clefts as alternatives to isolated autografting. For the search strategy, the PubMed and Medline databases were used with the indexing terms “'cleft palate' (Mesh), 'biocompatible materials' (Mesh), and 'dentistry' (Mesh).” There was no restriction on language or publication time. After the research, 26 articles were found, and then, only the filter for clinical trials was selected. With this methodology, five articles were selected. The full texts have been carefully evaluated. The main issue among the five selected articles was the closure of a cleft palate and/or alveolar bone with the use of different types of biomaterials (e.g. autogenous bone from the iliac crest and chin, deproteinized bovine bone (DBB), β-tricalcium phosphate (β-TCP), synthetic resorption based on calcium sulfate, and the engineering of bone tissue); they evaluated preoperative and postoperative clinically and through imaging tests. The autogenous bone associated with DBB or β-TCP significantly reduces the amount of autogenous bone harvested from the iliac crest, morbidity, and the hospitalization of the patient, and the isolated use of bovine hydroxyapatite resulted in lower bone density compared to that from autogenous bone.

Keywords: Alveolar bone grafting, biocompatible materials, bone transplantation, cleft palate


How to cite this article:
Gomes Ferreira PH, De Oliveira D, Duailibe De Deus CB, Okamoto R. Evaluation of the different biomaterials used in alveolar cleft defects in children. Ann Maxillofac Surg 2018;8:315-9

How to cite this URL:
Gomes Ferreira PH, De Oliveira D, Duailibe De Deus CB, Okamoto R. Evaluation of the different biomaterials used in alveolar cleft defects in children. Ann Maxillofac Surg [serial online] 2018 [cited 2019 Sep 22];8:315-9. Available from: http://www.amsjournal.com/text.asp?2018/8/2/315/248564




  Introduction Top


In surgeries for the correction of dentofacial deformities in patients with cleft palates, secondary bone grafting in the residual alveolar cleft is crucial to solving these problems.[1],[2],[3] Reconstructions of cleft palates are done when the patient is close to 9 months old, and the secondary alveolar clefts are addressed when the patient is between 9 and 11 years old, before the eruption of the maxillary canine; this allows the teeth to erupt in the grafted area.[1],[2],[4],[5]

The gold standard for these procedures involves the use of autogenous grafts arising from the iliac crest, but the capture surgery of this bone routinely comes with increased postoperative morbidity and lengthier hospital stays for patients.[6],[7],[8],[9] Studies also show that some areas are excellent as donor sites – such as the mandibular symphysis,[10],[11] rib,[12] skullcap,[13] and tibia.[14]

Bone substitutes – such as recombinant human bone morphogenetic protein-2, xenografts, or alloplastic materials – instead of autogenous bone have been widely used. These materials include β-tricalcium phosphate (β-TCP), hydroxyapatite, deproteinized bovine bone (DBB), and synthetic polymers, among others.[14],[15],[16],[17],[18],[19] Mixing autogenous grafts with other biomaterials is also a viable alternative that aims to decrease the donor area required for the procedure.[20]

Focusing mainly on the postoperative morbidity of these patients, scholars have searched for biomaterials presenting results close to or similar to autogenous bone in order to use less invasive techniques with satisfactory results.[21],[22]

Therefore, this study aims to use a literature review to evaluate and compare the different biomaterials used in surgeries for the closure of the palatal and alveolar clefts as alternatives to isolated autografting.


  Materials and Methods Top


For the search strategy, the database PubMed/Medline was used with the indexing terms “'cleft palate' (Mesh), 'biocompatible materials' (Mesh), and 'dentistry' (Mesh).” There was no restriction on language or publication time. After the research, 26 articles were found, and then, only the filter for clinical trials was selected.

The inclusion criteria were clinical trials related to the use of biomaterials to treat the palatal and alveolar clefts in cleft patients – regardless of age, gender, or ethnicity. Regarding the exclusion criteria, articles were removed if they were not related to the reconstruction of patients with palatine and alveolar clefts, to patients who had systemic changes that could affect the results, or to in vivo and in vitro studies.


  Results Top


With the methodology employed, 26 articles were found, and five references[21],[23],[24],[25],[26] were selected after their titles and summaries were read. The full texts have been carefully evaluated.

The main issue among the five selected articles was the closure of cleft palates and/or alveolar with the use of different types of biomaterials (autogenous bone from the iliac crest and chin, DBB, β-TCP, synthetic resorption based on calcium sulfate, and the engineering of bone tissue); the articles evaluated the preoperative and postoperative status clinically and through imaging tests. In the selected papers, one paper refers to the use of isolated autogenous bone,[21] three related papers addressed the combination of autogenous bone and substitute osseous material,[23],[25],[26] and one paper refers only to the use of osseous substitutes.[24] The participants in the studies totaled 115 patients, and they had an average age of 9.41 years. The characteristics evaluated in the five selected articles[21],[22],[23],[24],[25] can be viewed in [Table 1]a and [Table 1]b.


Click here to view


The number of patients evaluated in the studies ranged from 8 to 47.[21],[22],[23],[24],[25] Regarding gender, 37 patients were male, 31 patients were female, and the other 47 patients were not cited. The average age of the patients was approximately 10.82 years, with a minimum age of 10.4 months and a maximum age of 13 years.

Regarding the techniques used for the closure of the cleft palate and/or alveolar, doctors in one study[21] conducted the gingival flap advancement to the alveolar cleft closure; doctors in two studies performed the incision and detachment of the palate and alveolus for the closure of the cleft palate and alveolar bone.[25],[26] Doctors in one article[23] used the lateral flap technique to close an alveolar cleft, and another article[24] did not report the technique used to close the palate and alveolar cleft.

The doctors in most of the studies[21],[23],[25],[26] used autogenous bone grafts in the reconstruction of defects instead of DBB,[21],[23] calcium sulfate,[24] β-TCP,[25] or tissue engineering.[26] The main site adopted as a donor area was the iliac crest,[21],[23],[26] and doctors in only one article used bone from the chin.[25]

Among the aspects evaluated clinically, factors such as the time required to walk with or without assistance and the hospitalization time were significant when comparing the two groups (I and II).[21] It was noted that eruption delayed the deciduous teeth in older patients, and the eruption of the permanent canine was also evaluated.[24] The esthetic and occlusal changes in patients were also verified. Regardless of the group (I or II), no differences were observed between the aspects evaluated (P > 0.05).[23] Two articles[25],[26] did not report any evaluation of clinical aspects.

During the analysis of imaging tests (occlusal radiographs, panoramic radiographs, and computed tomography scans), the densities of the postoperative bone in isolated uses of autogenous bone from the iliac crest or DBB were similar between Groups I and II (P > 0.05).[21] Similarly, the processing of the autogenous bone associated with β-TCP showed no differences between the bone formation and postoperative bone resorption (P = 0.306).[25] In comparisons of the site operated on with the contralateral site without the presence of a cleft, it was observed that the use of autogenous bone from the iliac crest increased the bone density evaluated by tomography (Hounsfield unit), and it was observed that the use of autogenous bone from the iliac crest increased the tomographic density (Hounsfield unit) (P = 0.002), whereas the isolated use of bovine hydroxyapatite resulted in a similar density to that of the bone not operated upon from the contralateral area without a cleft (P = 0.328).[23] The tomographic postoperative volumes used for closing the clefts (tissue engineering [Group I] or autogenous bone from the iliac crest alone [Group II]) were similar (40.9 cm3 for Group I and 36.6 cm3 for Group II).[26]

The most frequently reported complications were related to the donor areas (paresthesia and pain during walking)[21] and the receiving areas (infections[21] and suture dehiscence[21],[23],[25] for the groups that use autografting for bone reconstruction). Two papers have reported complications;[24],[26] one utilized a substitute for a calcium sulfate base[24] and the other used graft tissue engineering or autogenous bone from the iliac crest.[26]


  Discussion Top


In relation to grafts in only the alveolar cleft region, the clinical trials in this review showed general alveolar bone maintenance independent of the material used – either in the isolated use of autogenous bone from the iliac crest, its association with DBB, or the use of isolated hydroxyapatite.[21],[23]

In comparisons of the autogenous bone arising from the iliac crest region and its association with DBB (Group I and Group II, respectively) in a clinical evaluation,[21] it was noted that the results for the time it took patients to walk with help (37.88/25.5 h) and without (67.07/46.63 h), the length of stay (5.4/4.23 days), and the graft harvesting from the iliac crest (2.53/1, 22 ml) were all statistically significant (P < 0.05). The loss of the blood transoperative (150/122.5 ml) and the duration of surgery (2.68/2.29 h) were not statistically significant (P > 0.05). However, evaluations of the density and height of the grafts in Groups I and II in the period 3 days before the operation and 1, 3, 6, 12, 18, and 24 months after the operation were similar (P > 0.05), showing that the association of biomaterials in Group II showed good results that were similar to those of autogenous bone but with lower postoperative morbidity for patients.

Compared with the same model of autogenous bone with bovine hydroxyapatite, the results of Benlidayi et al.[23] that were related to the esthetics and occlusion of patients were statistically significant (P < 0.05). In comparisons of bone density in the slots operated upon and the areas without slots (the contralateral area), the autologous bone had better results (426.1 × 543.9; P = 0.002) compared to those of isolated bovine hydroxyapatite (520.2 × 510.5; P = 0.328).

Thus, the autografts for medium and large defects, such as palatal and alveolar cracks, may lead to higher morbidity for the patient, greater volume loss, and longer times for recovery to normal functions, especially walking.[9] It was clear that, when unused autografts (iliac crest), most of the factors related to postoperative complications were reduced and still maintained the characteristics satisfying the bone-rebuilding process, such as the bone volume and the density of the postreconstruction of the bone tissue.[9],[27],[28] Therefore, the use of autografts is satisfactory, but they should be used in smaller quantities and should be supplemented with osteoconductive bone substitutes with slow degradation.

In evaluations of the graft in palatal and alveolar cleft region, the biomaterials used in the studies were autogenous bone; one study[26] used the iliac crest region as a donor area, another used the chin region,[25] and another used the autogenous bone associated with β-TCP.[25] Other studies used a resorbable bone substitute for a calcium sulfate base[24] or bone-tissue engineering, which consists of a preoperative bone biopsy (3–4 mm) that passes through the culture process and is seeded in a bovine collagen matrix resorbable (Osteovit® Braun, Melsungen, Germany); after a continuous layer of cells formed on the surface of the biomaterial, the grafts were performed.[26]

In 2010, Weijs et al.[25] conducted a study with 47 patients; they compared the use of autogenous bone (chin region) with the combination of autogenous bone and β-TCP. Through occlusal radiographs in preoperative, after 1 week and 1 year, in which the alveolar height was observed with 1% bone resorption (autogenous) and 3% bone apposition (autogenous and β-TCP); however, this was not statistically significant (P = 0.306), showing that it is not necessary to supplement the processing of grafts with β-TCP particles. The use of a resorbable bone substitute based on calcium sulfate, which also showed satisfactory bone healing, was assessed by occlusal and panoramic X-rays of the face.[24]

Despite the positive aspects observed in the association of biomaterials (autogenous and osteoconductive) at the closing of the bone clefts, the material must present the osteoconductive characteristic of slow degradation, as was observed for bovine hydroxyapatite.[21],[23] The phosphate-based substitutes are propitious to osteoconductive action but have much more rapid degradation compared to that of other bone substitutes. The association of autogenous bone with β-TCP provides similar results. However, even with these results, the association may be interesting in bone reconstruction due to the lower amount of autogenous bone needed and the volume ratio available for osteoconductive biomaterials.

A viable alternative to replacing autogenous bone was demonstrated in 2012 by Pradel and Lauer[26] through tissue engineering – which involved a bone biopsy and culture of the collected cells with a collagen matrix, which made it possible to close cracks and alveolar palates with results similar to those of grafts of autogenous cancellous bone from the iliac crest. Thus, this cell culture showed that improvement in the postoperative condition of patients, because it is not necessary to use a donor area and it decreases morbidity after surgery. Therefore, further studies should analyze the application of stem cells as potential cells in bone formation, initially in animal models, to determine the best concentrations for the subsequent clinical applicability in the reconstruction of bone defects in the patients.[22],[29],[30]


  Conclusions Top


Regarding the above clinical studies, it was concluded that the autogenous bone associated with DBB or β-TCP significantly reduces the amount of autogenous bone harvested from the iliac crest, the morbidity, and the hospitalization time of the patient and that the isolated use of bovine hydroxyapatite results in lower densities compared to those from autogenous bone. The use of bone tissue engineering is a promising alternative to the alveolar bone graft, but more in-depth studies should be carried out to enable its use.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Amanat N, Langdon JD. Secondary alveolar bone grafting in clefts of the lip and palate. J Craniomaxillofac Surg 1991;19:7-14.  Back to cited text no. 1
    
2.
Bergland O, Semb G, Abyholm FE. Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment. Cleft Palate J 1986;23:175-205.  Back to cited text no. 2
    
3.
Boyne PJ, Sands NR. Combined orthodontic-surgical management of residual palato-alveolar cleft defects. Am J Orthod 1976;70:20-37.  Back to cited text no. 3
    
4.
Abyholm FE, Bergland O, Semb G. Secondary bone grafting of alveolar clefts. A surgical/orthodontic treatment enabling a non-prosthodontic rehabilitation in cleft lip and palate patients. Scand J Plast Reconstr Surg 1981;15:127-40.  Back to cited text no. 4
    
5.
Enemark H, Sindet-Pedersen S, Bundgaard M. Long-term results after secondary bone grafting of alveolar clefts. J Oral Maxillofac Surg 1987;45:913-9.  Back to cited text no. 5
    
6.
Bajaj AK, Wongworawat AA, Punjabi A. Management of alveolar clefts. J Craniofac Surg 2003;14:840-6.  Back to cited text no. 6
    
7.
Kortebein MJ, Nelson CL, Sadove AM. Retrospective analysis of 135 secondary alveolar cleft grafts using iliac or calvarial bone. J Oral Maxillofac Surg 1991;49:493-8.  Back to cited text no. 7
    
8.
Sadove AM, Nelson CL, Eppley BL, Nguyen B. An evaluation of calvarial and iliac donor sites in alveolar cleft grafting. Cleft Palate J 1990;27:225-8.  Back to cited text no. 8
    
9.
Raposo-Amaral CA, Denadai R, Chammas DZ, Marques FF, Pinho AS, Roberto WM, et al. Cleft patient-reported postoperative donor site pain following alveolar autologous iliac crest bone grafting: Comparing two minimally invasive harvesting techniques. J Craniofac Surg 2015;26:2099-103.  Back to cited text no. 9
    
10.
Borstlap WA, Heidbuchel KL, Freihofer HP, Kuijpers-Jagtman AM. Early secondary bone grafting of alveolar cleft defects. A comparison between chin and rib grafts. J Craniomaxillofac Surg 1990;18:201-5.  Back to cited text no. 10
    
11.
Freihofer HP, Borstlap WA, Kuijpers-Jagtman AM, Voorsmit RA, van Damme PA, Heidbüchel KL, et al. Timing and transplant materials for closure of alveolar clefts. A clinical comparison of 296 cases. J Craniomaxillofac Surg 1993;21:143-8.  Back to cited text no. 11
    
12.
Eppley BL. Donor site morbidity of rib graft harvesting in primary alveolar cleft bone grafting. J Craniofac Surg 2005;16:335-8.  Back to cited text no. 12
    
13.
Cohen M, Figueroa AA, Haviv Y, Schafer ME, Aduss H. Iliac versus cranial bone for secondary grafting of residual alveolar clefts. Plast Reconstr Surg 1991;87:423-7.  Back to cited text no. 13
    
14.
Gomes-Ferreira PH, Okamoto R, Ferreira S, De Oliveira D, Momesso GA, Faverani LP, et al. Scientific evidence on the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in oral and maxillofacial surgery. Oral Maxillofac Surg 2016;20:223-32.  Back to cited text no. 14
    
15.
Hallman M, Cederlund A, Lindskog S, Lundgren S, Sennerby L. A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. Clin Oral Implants Res 2001;12:135-43.  Back to cited text no. 15
    
16.
Hallman M, Lundgren S, Sennerby L. Histologic analysis of clinical biopsies taken 6 months and 3 years after maxillary sinus floor augmentation with 80% bovine hydroxyapatite and 20% autogenous bone mixed with fibrin glue. Clin Implant Dent Relat Res 2001;3:87-96.  Back to cited text no. 16
    
17.
Kasabah S, Simůnek A, Krug J, Lecaro MC. Maxillary sinus augmentation with deproteinized bovine bone (Bio-oss) and impladent dental implant system. Part II. Evaluation of deprotienized bovine bone (Bio-oss) and implant surface. Acta Medica (Hradec Kralove) 2002;45:167-71.  Back to cited text no. 17
    
18.
Maiorana C, Redemagni M, Rabagliati M, Salina S. Treatment of maxillary ridge resorption by sinus augmentation with iliac cancellous bone, anorganic bovine bone, and endosseous implants: A clinical and histologic report. Int J Oral Maxillofac Implants 2000;15:873-8.  Back to cited text no. 18
    
19.
Tadjoedin ES, de Lange GL, Bronckers AL, Lyaruu DM, Burger EH. Deproteinized cancellous bovine bone (Bio-oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J Clin Periodontol 2003;30:261-70.  Back to cited text no. 19
    
20.
Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg 2009;38:356-62.  Back to cited text no. 20
    
21.
Thuaksuban N, Nuntanaranont T, Pripatnanont P. A comparison of autogenous bone graft combined with deproteinized bovine bone and autogenous bone graft alone for treatment of alveolar cleft. Int J Oral Maxillofac Surg 2010;39:1175-80.  Back to cited text no. 21
    
22.
Bajestan MN, Rajan A, Edwards SP, Aronovich S, Cevidanes LH, Polymeri A, et al. Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: A randomized controlled, clinical trial. Clin Implant Dent Relat Res 2017;19:793-801.  Back to cited text no. 22
    
23.
Benlidayi ME, Tatli U, Kurkcu M, Uzel A, Oztunc H. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts. J Oral Maxillofac Surg 2012;70:e95-102.  Back to cited text no. 23
    
24.
Lazarou SA, Contodimos GB, Gkegkes ID. Correction of alveolar cleft with calcium-based bone substitutes. J Craniofac Surg 2011;22:854-7.  Back to cited text no. 24
    
25.
Weijs WL, Siebers TJ, Kuijpers-Jagtman AM, Bergé SJ, Meijer GJ, Borstlap WA, et al. Early secondary closure of alveolar clefts with mandibular symphyseal bone grafts and beta-tri calcium phosphate (beta-TCP). Int J Oral Maxillofac Surg 2010;39:424-9.  Back to cited text no. 25
    
26.
Pradel W, Lauer G. Tissue-engineered bone grafts for osteoplasty in patients with cleft alveolus. Ann Anat 2012;194:545-8.  Back to cited text no. 26
    
27.
Abdulrazaq SS, Issa SA, Abdulrazzak NJ. Evaluation of the trephine method in harvesting bone graft from the anterior iliac crest for oral and maxillofacial reconstructive surgery. J Craniofac Surg 2015;26:e744-6.  Back to cited text no. 27
    
28.
Lopez GD, Hijji FY, Narain AS, Yom KH, Singh K. Iliac crest bone graft: A minimally invasive harvesting technique. Clin Spine Surg 2017;30:439-41.  Back to cited text no. 28
    
29.
Herford AS, Miller M, Signorino F. Maxillofacial defects and the use of growth factors. Oral Maxillofac Surg Clin North Am 2017;29:75-88.  Back to cited text no. 29
    
30.
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015;60:1517-32.  Back to cited text no. 30
    



 
 
    Tables

  [Table 1]


This article has been cited by
1 Comparison of three surgical models of bone tissue defects in cleft palate in rabbits
Xue-Cheng Sun,Ze-Biao Zhang,Hu Wang,Jian-Hui Li,Xu Ma,Hong-Fei Xia
International Journal of Pediatric Otorhinolaryngology. 2019;
[Pubmed] | [DOI]



 

Top
 
 
Search
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)  

 
  In this article
   Abstract
  Introduction
   Materials and Me...
  Results
  Discussion
  Conclusions
   References
   Article Tables

 Article Access Statistics
    Viewed808    
    Printed43    
    Emailed0    
    PDF Downloaded158    
    Comments [Add]    
    Cited by others 1    

Recommend this journal