Atormac
Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
 
 
     
ORIGINAL ARTICLE - COMPARATIVE STUDY
Year : 2020  |  Volume : 10  |  Issue : 1  |  Page : 3-9

Three-Dimensional diagnosis in orbital reconstructive surgery


1 Department of Oral and Maxillofacial Surgery, Azerbaijan Medical University, Baku, Azerbaijan
2 Medical Faculty, Yeditepe University, Istanbul, Turkey

Correspondence Address:
Prof. Chingiz R Rahimov
Bakichanov Street 23, AZ 1022, Baku
Azerbaijan
Login to access the Email id


DOI: 10.4103/ams.ams_183_19

Rights and Permissions

Introduction: Orbital floor fractures are common among mid-face fractures. The general aim of treatment is to restore orbital volume and anatomy with grafts or reconstructive materials. Malpositioning of the implants and inadequate volume restorations are common complications of these procedures. The aim of our study is to present the surgical outcomes of orbital reconstruction aided by our algorithm of patient-specific virtual planning. Materials and Methods: The current study was performed on 77 patients with orbital wall fractures who were categorized into two groups: Group A – 42 patients (virtual planning) and Group B – 35 patients (traditional approach). Criteria of analysis included the presence of diplopia postoperatively and duration of surgical procedures. Results: Diplopia was recorded right after surgery in 16 cases (38.1%) of Group A and in 12 cases (34.3%) of Group B. However, 6 months postreconstruction, residual diplopia was recorded in 4 cases (9.5%) of Group A and in 12 cases (34.3%) of Group B. Mean operation time in Group A for the patients with isolated zygoma fracture was 2.23 h; for isolated orbital wall fracture was 1.98 h; and for combined zygoma, orbital wall, and facial bone fracture was 3.07 h. In Group B, these indexes were 3.47, 2.05, and 3.31 h, respectively. Conclusions: Application of virtual planning could significantly improve postoperative outcomes in orbital reconstruction. However, application of this technology could be limited by complicated defects of the orbital walls, which would require complex shape of the implant that might be difficult to be prevent virtually.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1085    
    Printed68    
    Emailed0    
    PDF Downloaded183    
    Comments [Add]    

Recommend this journal