Atormac
Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
 
 
     
ORIGINAL ARTICLE - EVALUATIVE STUDY
Year : 2020  |  Volume : 10  |  Issue : 1  |  Page : 91-95

Clinical study on the minimally invasive-guided genioplasty using piezosurgery and 3d printed surgical guide


Department of Oral and Maxillofacial Surgery, Erasme Hospital, Université Libre De Bruxelles, Brussels, Belgium

Correspondence Address:
Dr. Olivier Oth
Department of Oral and Maxillofacial Surgery, Erasme Hospital, Université Libre De Bruxelles, Route De Lennik 808, 1070 Brussels
Belgium
Login to access the Email id


DOI: 10.4103/ams.ams_79_19

Rights and Permissions

Introduction: A retrospective clinical study was performed regarding the minimally invasive-guided genioplasty technique (MIGG technique) described in a previous clinical note. The aims of this clinical study were to study the incidence of immediate complications with this technique compared with a control group using a nonminimally genioplasty technique, to validate the accuracy of the three-dimensional (3D) printed cutting guide, and to evaluate the duration of the surgery and the satisfaction of the surgeons with this technique. Materials and Methods: One controlled group, including 56 patients, operated with a classical genioplasty and one group, including 24 patients operated with the MIGG technique. The inclusion criteria were patients from 18 years old benefiting from orthognathic surgery for dysmorphic maxillofacial disorders, sleep apneas, or posttraumatic malocclusion; operated by the three same surgeons. A database was retrospectively made, including the demographics parameters, the indication, the type and the duration of surgery, the incidence of complication, and the type of complication. The accuracy of the cutting guide was also studied by the comparison of two distances in the MIGG group on the preoperative surgical simulation and on the postoperative cephalometric radiography. A satisfaction survey for the surgeons of the department regarding the MIGG technique was also analyzed. Conclusion: No statistical difference was found in the incidence of complications between the MIGG group and the control group. Using a guide does not cause more surgical infection. The protection of the inferior alveolar nerve is obvious. The absence of statistical difference is due to the fact that the majority of patients also benefited from the bilateral sagittal split osteotomy during surgery. The 3D-cutting guide used is very accurate: There is indeed no significative difference in the measurements A and B before and after the genioplasty. The MIGG technique is thus a predictable, safe, and easy-to-use technique that should be used routinely by maxillofacial surgeons. It combines the latest technologies in piezosurgery and in 3D-guided surgery by the creation of a validated-accurate 3D-printed cutting guide. This technique is affordable by the use of open-source program and a desktop fused deposit Modeling 3D-printer. Finally, the comfort of the surgeon is improved, and the operating time is decreased.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed216    
    Printed17    
    Emailed0    
    PDF Downloaded55    
    Comments [Add]    

Recommend this journal