Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
 
 
     
INVITED REVIEW ARTICLE
Year : 2015  |  Volume : 5  |  Issue : 1  |  Page : 4-13

Biomimetic approaches to complex craniofacial defects


1 Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago. IL, USA
2 Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
3 Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
4 Department of Orthopedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
5 Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, USA

Correspondence Address:
Russell R Reid
Bernard Sarnat Scholar of Craniofacial Research, Section of Plastic and Reconstructive Surgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland Ave., Room J-641, MC 6035, Chicago, IL 60637
USA
Login to access the Email id

Source of Support: The reported work was supported in part by research grants from the National Institute of Dental and Craniofacial Research (RRR; #1K08DE020140-01) and The American Society of Maxillofacial Surgeons/Maxillofacial Surgeons Foundation (RRR).


DOI: 10.4103/2231-0746.161044

PMID: 26389027

Rights and Permissions

The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4078    
    Printed132    
    Emailed0    
    PDF Downloaded546    
    Comments [Add]    
    Cited by others 15    

Recommend this journal