Atormac
Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
 
 
     
TECHNICAL NOTE
Year : 2020  |  Volume : 10  |  Issue : 1  |  Page : 178-181

The minimally invasive-guided genioplasty technique using piezosurgery and 3d printed surgical guide: An innovative technique


Department of Oral and Maxillofacial Surgery, Hospital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium

Correspondence Address:
Dr. Olivier Oth
Department of Oral and Maxillofacial Surgery, Hospital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels
Belgium
Login to access the Email id


DOI: 10.4103/ams.ams_78_19

Rights and Permissions

Introduction: Mental nerve injuries with neurosensory deficits, asymmetries, and intra-operative bleeding are the main immediate complications of genioplasty. Following a recent systematic review, three-dimensional (3D)-printed cutting guide could improve the predictability and accuracy of this surgical technique avoiding postoperative asymmetries. Furthermore, anatomical structures in the surgical area (mental nerve and teeth roots) are better protected, reducing the morbidity and providing safer results. Ultrasonic piezoelectric osteotomy allows by its intrinsic characteristics, a selective cut of mineralized structure with a lower risk of vascular and nervous damage (microvibrations), intra-operative precision (thin cutting scalpel and no macro-vibrations), and blood-free site (cavitation effect). The aim of this article is to present a new minimally invasive technique: the minimally invasive-guided genioplasty technique (aka MIGG technique). This technique combines the advantages of piezosurgery and of a space-saving 3D-printed cutting guide, requiring open-source programs and an affordable 3D printing technology. Materials and Methods: All the steps of this technique are described: preoperative surgical planning (CT scanner, segmentation with 3D slicer®, and design of the cutting guide with Blender®) and 3D printing of the guide and sterilization of it. The surgical procedure is presented in detail as well as the postoperative care. Conclusion: The MIGG technique offers, according to the authors, a better postoperative recuperation, a reduction in operating time, less complications, and protection of the anatomical structures (mental nerve, teeth, lingual soft tissue and vessels). This minimally invasive technique for genioplasty is a promising approach to perform a chin osteotomy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed318    
    Printed17    
    Emailed0    
    PDF Downloaded78    
    Comments [Add]    

Recommend this journal