Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
Year : 2020  |  Volume : 10  |  Issue : 2  |  Page : 304-311

Revascularized fibula free flap reconstruction and curvilinear transport distraction osteogenesis in closure of large postmaxillectomy defects: A new gold standard?

1 Department of Plastic Reconstructive and Maxillofacial Surgery, University of Cape Town, Rondebosch, Cape Town, South Africa
2 Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, Division of Pulmonology, Centre for Lung Infection and Immunity, University of Cape Town, Rondebosch, Cape Town, South Africa
3 Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town, South Africa

Correspondence Address:
Dr. George Vicatos
Department of Mechanical Engineering, University of Cape Town, 7701 Rondebosch
South Africa
Login to access the Email id

DOI: 10.4103/ams.ams_267_19

Rights and Permissions

Introduction: The revascularized fibula free flap (RFFF) is the most popular method of postmaxillectomy reconstruction. This article proves that the use of curvilinear transport distraction osteogenesis (CTDO) is an efficacious way in closing large defects in the maxilla and a superior alternative to the RFFF. Methods and Materials: In a prospective cohort study of six postmaxillectomy patients, CTDO was applied and the new bone (regenerate) was compared with the parent bone from which it had been regenerated. These results were compared with a retrospective group of six participants of similar age and sex who had undergone RFFF reconstruction as an external control. Clinical measurements taken at the depth of the alveolar vestibule were recorded at three different exact points juxtaposed, namely (A) lateral incisor, (B) first premolar, and (C) first molar. These areas of interest were similar to those chosen on the CT scans. Impressions were taken from all the patients and stone casts were made. The width of the alveolar bone was computed based on the measurements made from the stone casts. The stone casts were then used to calculate the width and depth of the soft tissue and bone in the maxilla in the (A), (B), and (C) regions. Results: The regenerate possessed anatomical and physiological characteristics equal to the parent bone. For the CTDO patients, prosthetic rehabilitation of the dentition was supported by dental implants after osseointegration of the latter into the newly created bone and soft tissue. Discussion: The production of the curvilinear bone and soft tissue along a horizontal plane has been demonstrated. The new alveolar bone achieved the correct width and depth to create a physiological vestibule and a functional/esthetic zone for the placement of dental implants. In addition, the shape of the palatal vault was also maintained. The CTDO method is a reliable method of maxillary reconstruction and has a better anatomical and functional outcome than the RFFF.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded225    
    Comments [Add]    

Recommend this journal