Home  -  About us  -  Editorial board  -  Search  -  Ahead of print  -  Current issue  -  Archives  -  Instructions  -  Subscribe  -  Contacts  -  Advertise - Login 
Year : 2020  |  Volume : 10  |  Issue : 2  |  Page : 370-376

Three-dimensional bioprinting using a coaxial needle with viscous inks in bone tissue engineering - An In vitro study

1 Department of Oral and Maxillofacial Surgery, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2 Wallenberg Wood Science Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
3 Department of Oral and Maxillofacial Surgery, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
4 Department of Oral and Maxillofacial Surgery, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg; Department of Oral and Maxillofacial Surgery, Linkoping University Hospital, Linkoping, Sweden

Correspondence Address:
Dr. Java Walladbegi
Medicinaregatan 12D, PO Box 450, 405 30 Gothenburg
Login to access the Email id

DOI: 10.4103/ams.ams_288_20

Rights and Permissions

Introduction: Vascularized autologous tissue grafts are considered “gold standard” for the management of larger bony defects in the craniomaxillofacial area. This modality does however carry limitations, such as the absolute requirement for healthy donor tissues and recipient vessels. In addition, the significant morbidity of large bone graft is deterrent to fibula bone flap use. Therefore, less morbid strategies would be beneficial. The purpose of this study was to develop a printing method to manufacture scaffold structure with viable stem cells. Materials and Methods: In total, three different combinations of ground beta tri-calcium phosphate and CELLINK (bioinks) were printed with a nozzle to identify a suitable bioink for three-dimensional printing. Subsequently, a coaxial needle, with three different nozzle gauge combinations, was evaluated for printing of the bioinks. Scaffold structures (grids) were then printed alone and with additional adipose stem cells before being transferred into an active medium and incubated overnight. Following incubation, grid stability was evaluated by assessing the degree of maintained grid outline, and cell viability was determined using the live/dead cell assay. Results: Among the three evaluated combinations of bioinks, two resulted in good printability for bioprinting. Adequate printing was obtained with two out of the three nozzle gauge combinations tested. However, due to the smaller total opening, one combination revealed a better stability. Intact grids with maintained stability were obtained using Ink B23 and Ink B42, and approximately 80% of the printed stem cells were viable following 24 hours. Discussion: Using a coaxial needle enables printing of a stable scaffold with viable stem cells. Furthermore, cell viability is maintained after the bioprinting process.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded152    
    Comments [Add]    

Recommend this journal